In the last two years, my ideas on teaching have been further shaped by my role as a full-time professor. I have learned a number of things, but probably the most valuable lessons have come from an area that I am constantly working on improving: effectively communicating ideas to the students. Active learning techniques and interaction in the classroom are great tools if used in an appropriate and effective manner. The progression of becoming a better teacher is a continual growth process; one which I have just started. There are many lessons yet to learn, and here are some ideas that I have found to be successful and try to implement:

- **Finding the right teaching tool leads to more effective teaching.** Due to the unique learning styles of each student, one style of teaching will not effectively communicate the ideas to all of the students. A variety of teaching techniques can be employed, like lecturing, solving homework style problems, asking peer-instruction questions, and engaging in Socratic discussions, as well as appropriately-placed visualization tools, like demonstrations, either physical or computational (Physlets as an example). The proper use of these various techniques can result in a more efficient transmission of the ideas to the entire class.

- **Learning is a journey with teacher and students walking together through the material.** No matter the course, the journey is easier to follow if there are clear objectives and goals laid out at the beginning of the semester. These learning objectives become the basis for all assignments and exams during the course, giving the students clearly defined boundaries within which they can explore.

- **The level of the course dictates the structure.** Each of the three levels of physics courses (liberal arts, general physics, and upper-level physics) requires a different structure in order to fulfill the desired course objectives. At the liberal arts level, the course should be designed to introduce the students to the world of physics around them and demonstrate how scientists think and approach problems. The resulting course structure is very engaging and visual. At the introductory physics level, the wide range of students requires a variety of teaching techniques, seeking to engage the different levels of students. The interaction required with some of these techniques demands a small amount of flexibility in each lecture. In the upper-level courses, with typically smaller class sizes and a more intimate environment, the classroom becomes a place to connect with the students. The result is a more fluid course structure, accelerating as students grasp material quickly or slowing as they struggle.

There are also lessons I learned as a student that have shaped my views as a teacher. Although I rarely realized it at the time, it was the teachers that cared for and challenged me the most that left the biggest impression on me. Those teachers understood the importance of investing time and energy in their students. They created an engaging classroom atmosphere that encouraged learning. This is the type of impact that I would like to have each and every time I step into the role of teacher. Creating this environment and watching students grow through this mentoring process is the reason that I enjoy teaching so much.